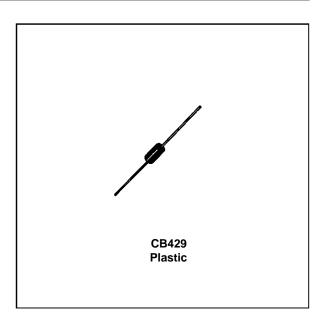


TPB200S TPB245S/TPB265S

SURGE ARRESTORS

FEATURES


- SOLID STATE SURGE ARRESTOR PACKAGED IN AXIAL DIODE.
- VOLTAGE RANGE = 200 V TO 265 V
- TIGHT VOLTAGE TOLERANCE
- FAST RESPONSE TIME
- VERY LOW AND STABLE LEAKAGE CURRENT
- REPETITIVE SURGE CAPABILITY I_{PP} = 100 A, 10/1000 μs.
- FAIL-SAFE WHEN DESTROYED

DESCRIPTION

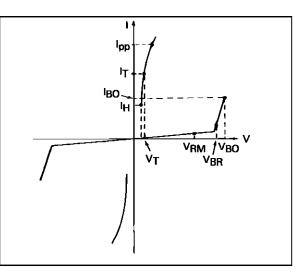
Bidirectional device used for primary protection in telecom equipments.

Providing long service life, and adapted for sensitive electronic equipments protection.

If destroyed the component will continue to guarantee a protection with a permanent short circuit, meaning "fail save criteria". This particular behaviour will also allow an easy failure detection on the line.

	ABSOLUTE RATINGS	(limitina	values)	- 40°C	< Tamb	< +80°C
--	------------------	-----------	---------	--------	--------	---------

Symbol	Parameter		Value	Unit	
IPP	Peak Pulse Current.	10/1000 μs	100	A	
		8/20 μs	200	A	
	Fail Save Criteria.	8/20 μs	10	kA	
Non Repetitive Surge Peak on-state		60 Hz	30	A	
		50Hz	25	A	
	Non Repetitive Surge Peak on-state	1s	14	A	
	Current F = 50 Hz.	2s	10	A	
dv/dt	Critical Rate of Rise of on-state Voltage.	67% V _{BR}	10	kV/μs	
TL	Maximum Lead Temperature to Soldering During 10 s.		250	°C	

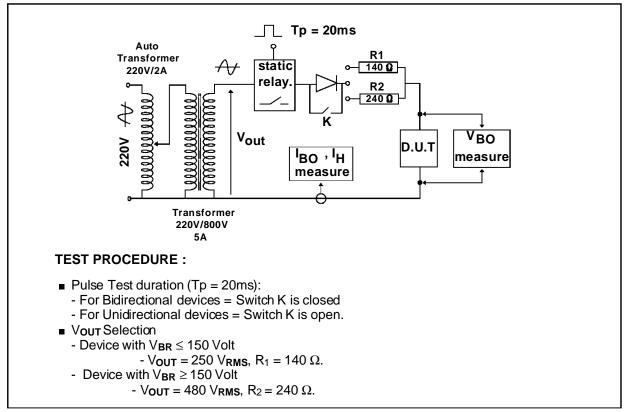

THERMAL RESISTANCE

Symbol	Parameter	Value	Unit
RTH (j-a)	Junction-leads Thermal Resistance	20	°C/W

TPB200S/TPB245S/TPB265S

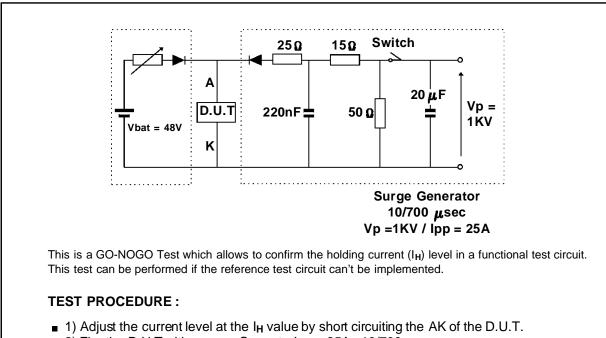
ELECTRICAL CHARACTERISTICS

Symbol	Parameter	
VRM	Stand-off voltage	
VBR	Breakdown voltage	
VBO	Breakover voltage	
Ін	Holding current	
VT	On-state voltage	
IBO	Breakover current	
IPP	Peak pulse current	

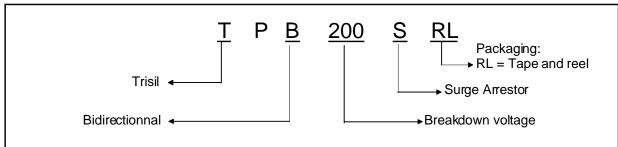


Types	I _R @	VRM	VBR	@ I _R	VBO @	во	Ін	VT	С
	max		min		max	max	min	max	max
					note1		note1	note2	note3
	μΑ	v	v	mA	v	mA	mA	v	рF
TPB200S	10	170	200	1	265	600	260	3.5	200
TPB245S	10	210	245	1	350	600	260	3.5	200
TPB265S	10	225	265	1	400	600	260	3.5	200

All parameters tested at 25°C, except where indicated


Note 1 : See the reference test circuit for I_H, I_{BO} and V_{BO} parameters. Note 2 : Square pulse Tp = $500 \,\mu s - I_T = 5A$. Note 3 : V_R = 1V, F = 1MHz.

REFERENCE TEST CIRCUIT FOR I_H , I_{BO} and V_{BO} parameters :


FUNCTIONAL HOLDING CURRENT (IH) TEST CIRCUIT GO - NOGO TEST.

- 2) Fire the D.U.T with a surge Current : Ipp = 25A , 10/700 μ s.
- 3) The D.U.T will come back to the OFF-State within a duration of 50 ms max.

TPB200S/TPB245S/TPB265S


ORDER CODE

MARKING

Туре	Marking
TPB200S	TPB200S
TPB245S	TPB245S
TPB265S	TPB265S

PACKAGE MECHANICAL DATA

Packaging : Products are supplied in tape and reel.

Ref	Millimeters		Inches				
	min	max	min	max			
Ø b2	-	1.06	-	0.042			
ØD	-	5.1	-	0.20			
G	-	9.8	-	0.386			
L 26 - 1.024 -							
L1 - 1.27 - 0.050							
note 1 : The diameter \emptyset b2 is not controllec over zone L1.							

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

Purchase of I²C Components by SGS-THOMSON Microelectronics, conveys a licence under the Philips I²C Patent. Rights to use these components in an I²C system, is grantede provided that the system conforms to the I²C Standard Specification as defined by Philips.

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands -Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

